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Abstract

In this paper, a solution to the dynamic problem of reinforced concrete slab-and-beam structures
including creep and shrinkage effects is presented. The adopted model takes into account the resulting in-
plane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to
the combined response of the system. The analysis consists of isolating the beams from the plate by sections
parallel to the lower outer surface of the plate. The influence on creep and shrinkage effects of the time
between the casting and the loading of the plate and the beams is taken into account. A lumped mass matrix
is constructed from the tributary mass areas to the nodal mass points and a stiffness matrix is computed
using the solution of the corresponding static problem. Both free and forced vibrations are considered and
numerical examples of practical interest are presented. The discrepancy between the eigenvalues obtained
using the present analysis, which better approximates to the actual response of the plate–beam system and
the corresponding ones which ignore the in-plane forces and deformations requires the adopted model.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The interest in reinforced concrete slab-and-beam structures has been widespread in recent
years due to the economic and structural advantages of such systems. Stiffened reinforced
concrete plate structures are efficient, economical and functional, while construction using precast
beams is the quickest, most usual and economical method for long river/or valley bridges or for
long-span slabs. The extensive use of plate structures necessitates a rigorous static and dynamic
analysis.
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Although there is extensive literature on static analysis of these systems [1–10], to the authors’
knowledge only a limited amount of technical literature is available on the dynamic analysis of
stiffened plate systems, limited to evaluating bounds of eigenfrequencies using the Rayleigh–Ritz
procedure [11,12] or employing the finite element method [13]. In previous work the adopted
model for the dynamic analysis of plate–beams systems consists of isolating the beams from the
plate and neglecting the shear forces at the interfaces. This assumption results in considerable
discrepancies from the actual response of the stiffened plate. Moreover, it does not allow these
forces to be determined, which are necessary for the design of composite or prefabricated
structures.
In this paper the dynamic analysis of reinforced concrete slab-and-beam structures is presented.

The adopted structural model is that employed by Sapountzakis and Katsikadelis [10], which,
contrary to the models used previously, takes into account the resulting in-plane forces and
deformations of the plate as well as the axial forces and deformations of the beam, due to
combined response of the system. Using this model, the study of the dynamic behaviour of a
stiffened plate subjected to a lateral load and to the effects of creep and shrinkage, either for
simultaneous or for separate casting of the plate and the beams is attempted. The method
presented employs the static solution to establish a flexibility matrix with respect to a set of nodal
mass points in the interior of the plate. The mass matrix is constructed by lumping the mass areas
contributing to the nodal mass points of the discretized plate [14, 15]. The static solution is
obtained using the analogue equation method (AEM) [16]. The analysis consists in isolating the
beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the
interface, which produce lateral deflection and in-plane deformation of the plate and lateral
deflection and axial deformation of the beam, are established using continuity conditions at the
interface. Both free and forced transverse vibrations are considered and numerical examples of
practical interest are presented. The discrepancy between the eigenfrequencies obtained using the
analysis presented, which better approximates to the actual response of the plate–beam system,
and the corresponding ones which ignore the in-plane forces and deformations, justify the analysis
used in the proposed model. Finally, the influence of the time interval between the casting of the
plate and the beams on the dynamic behaviour of the stiffened plate is examined.

2. Statement of the problem

Consider a thin reinforced concrete plate having constant thickness hp; occupying the domain O
of the x; y plane and stiffened by a set of parallel reinforced concrete beams. The plate may have J

holes and is supported on its boundary G ¼
SJ

j¼0 Gj; which may be piecewise smooth (Fig. 1),
while the beams may have point supports. For the sake of convenience the x-axis is taken parallel
to the beams.
Let the time of the casting of the beams tbc be the beginning of the time considered t; tbl be the

time at initial loading of the beams, tpc be the time of the casting of the plate and tpl be the time at
which the plate is initially subjected to the lateral load g ¼ gðx; tÞ; x : fx; yg; tX0:
The solution of the problem at hand is approached by isolating the beams from the plate by

sections in the lower outer surface of the plate and taking into account the tractions at the
fictitious interfaces (Fig. 2). These tractions result in the loading of the beam as well as the
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additional loading of the plate. Their distribution is unknown and can be established by imposing
displacement continuity conditions at the interfaces and using the procedure developed in this
investigation.
The integration of the tractions along the width of the beam result in line forces per unit length

which are denoted by qx; qy and qz: Taking into account that the torsional stiffness of the beam is
small, the traction component qy; in the direction normal to the beam axis, may be ignored.
However, in a more refined model the influence of this component may also be considered. The
other two components qx and qz produce the following loadings along the trace of each beam:
(a) In the plate

(i) A lateral line load �qz at the interface.
(ii) A lateral line load �qMp=qx due to the eccentricity of the component qx from the

middle surface of the plate. Mp ¼ qxhp=2 is the bending moment.
(iii) An in-plane line body force qx at the middle surface of the plate.
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Fig. 2. Thin elastic plate stiffened by beams (a) and isolation of the beams from the plate (b).
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(b) In each beam

(i) A transverse load qz:
(ii) A transverse load qMb=qx due to the eccentricity of qx from the neutral axis of the

beam cross-section.
(iii) An in-plane axial force qx:

The structural models of the plate and the beams are shown in Fig. 3.
Following from the above considerations the response of the plate and of the beams may be

described by the following initial boundary value problems.

2.1. For the plate

The plate undergoes transverse deflection and in-plane deformation. Thus, for the transverse
deflection

Dr4wp þ rp .wp � Nx

@2wp

@x2
þ 2Nxy

@2wp

@x@y
þ Ny

@2wp

@y2

� �

¼ g �
XK

k¼1

qðkÞz þ
@M ðkÞ

p

@x

 !
dðy � ykÞ in O; ð1Þ

a1wp þ a2Vn ¼ a3 on G; ð2aÞ

b1
@wp

@n
þ b2Mn ¼ b3; ð2bÞ
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Fig. 3. Structural model of the plate and the beams.
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wpðx; 0Þ ¼ eðxÞ; ð3aÞ

’wpðx; 0Þ ¼ %eðxÞ; ð3bÞ

where wp ¼ wpðx; tÞ; is the transverse deflection of the plate; DðtÞ ¼ EpðtÞh3
p=12ð1� v2Þ is its time-

dependent flexural rigidity with Ep being the elastic modulus and n the Poisson ratio; Nx ¼
Nxðx; tÞ; Ny ¼ Nyðx; tÞ; Nxy ¼ Nxyðx; tÞ are the membrane forces per unit length of the plate cross-
section at time t; rp ¼ rhp is the surface mass density of the plate with r being the volume mass
density; dðy � ykÞ is the Dirac’s delta function in the y direction; eðxÞ; %eðxÞ are the initial deflection
and the initial velocity of the points of the middle surface of the plate; Mn and Vn are the bending
moments normal to the boundary and the effective reaction along it, respectively, and they are
given as

Mn ¼ �D
@2wp

@n2
þ n

@2wp

@t2

� �
; ð4Þ

Vn ¼ �D
@

@n
r2wp � ðn� 1Þ

@

@s

@2wp

@n@t

� �
: ð5Þ

Finally, ai; bi (i=1,2,3) are functions specified on the boundary G: For the purposes of this
investigation the material behaviour of the reinforced concrete plate is assumed to be linearly
elastic (service state conditions).
The boundary conditions (2a) and (2b) are the most general linear boundary conditions for the

plate problem including also the elastic support. It is apparent that all types of the conventional
boundary conditions (clamped, simply supported, free or guided edge) can be derived from these
equations by specifying the functions ai and bi appropriately (e.g., for a clamped edge it is
a1 ¼ b1 ¼ 1; a2 ¼ a3 ¼ b2 ¼ b3 ¼ 0).
If the stresses are kept within the limits corresponding to the normal service conditions,

assuming a linear relationship between creep and the stress causing the creep and denoting by
tp ¼ tpl � tpc; Trost’s theory [17] gives the tangent modulus of elasticity as

EpðtÞ ¼
Epl

1þ wjðt; tpÞ
; ð6Þ

where Epl is the tangent modulus of elasticity of the plate at time tp; w is an ageing coefficient
depending on strain development with time, jðt; tpÞ is the creep coefficient related to the elastic
deformation at tp days which is defined as [18]

jðt; tpÞ ¼ fRHbðfcmÞbðtpÞbcpðt � tpÞ; ð7Þ

where jRH ; bðfcmÞ and bðtpÞ are the factors depending on the relative humidity, the concrete
strength and the concrete age at loading, respectively, which are defined as

jRH ¼ 1þ ð1� RH=100Þ=ð0:10
ffiffiffiffiffi
h0

3
p

Þ; ð8aÞ

bðfcmÞ ¼ 16:8=
ffiffiffiffiffiffi
fcm

p
; ð8bÞ

bðtpÞ ¼ 1=ð0:1þ t0:20p Þ; ð8cÞ
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where RH is the relative humidity of the ambient environment in %, h0 ¼ 2Ap=up is the notional
size of the plate in mm, Ap is the area of the plate cross-section, up is the plate perimeter in contact
with the atmosphere, fcm is the mean compressive strength of concrete in N/mm2 at the age of 28
days. Moreover, bcpðt � tpÞ in Eq. (7) is a coefficient for the development of creep with time, which
is estimated from

bcpðt � tpÞ ¼ ½ðt � tpÞ=ðbH þ t � tpÞ
0:3; ð9Þ

where bH is a coefficient depending on the relative humidity RH; given as

bH ¼ 1:5½1þ ð0:012RHÞ18
h0 þ 250p1500: ð10Þ

Since linear plate bending theory is considered, the components of the membrane forces Nx; Ny;
Nxy do not depend on the deflection wp: They are given as

Nx ¼ C
@up

@x
þ n

@vp

@y

� �
; ð11aÞ

Ny ¼ C n
@up

@x
þ
@vp

@y

� �
; ð11bÞ

Nxy ¼ C
1� n
2

@up

@y
þ

@vp

@x

� �
; ð11cÞ

where CðtÞ ¼ EpðtÞ=ð1� n2Þ; up ¼ upðx; tÞ and vp ¼ vpðx; tÞ are the displacement components of the
middle surface of the plate arising from both the line body force qx and the plate shrinkage, which
is conveniently expressed in terms of a uniform variation of temperature Tpðx; tÞ: The above
displacement components are established by solving independently the plane stress problem,
which is described by the following quasi-static (in-plane inertia forces are ignored) boundary
value problem (Navier’s equations of equilibrium):

r2up þ
1þ v

1� v

@

@x

@up

@x
þ
@vp

@y

� �
þ

1

Gp

qxdðy � ykÞ � 2a
ð1þ vÞ
ð1� vÞ

@Tp

@x
¼ 0; in O ð12aÞ

r2vp þ
1þ v

1� v

@

@y

@up

@x
þ

@vp

@y

� �
� 2a

1þ v

1� v

@Tp

@y
¼ 0; ð12bÞ

g1un þ g2Nn ¼ g3 on G; ð13aÞ

d1ut þ d2Nt ¼ d3 ð13bÞ

in which GpðtÞ ¼ EpðtÞ=2ð1þ nÞ is the shear modulus of the plate; a is the linear coefficient of
thermal expansion; Nn; Nt and un; ut are the boundary membrane forces and displacements in the
normal and tangential directions to the boundary, respectively; gi; di ði ¼ 1; 2; 3Þ are functions
specified on G:
Assuming that creep and shrinkage are independent, the temperature distribution Tpðx; tÞ is

given as [18]

Tpðx; tÞ ¼ espðt � tpcÞ=a; ð14Þ
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where espðt � tpcÞ is the shrinkage strain calculated from

espðt � tpcÞ ¼ espðfcmÞbRHbspðt � tpcÞ; ð15Þ

where espðfcmÞ; bRH are the factors depending on the concrete strength and the relative humidity,
respectively, which are defined as

espðfcmÞ ¼ ½160þ bscð90� fcmÞ
10�6; ð16aÞ

bRH ¼
�1:55ð1� ðRH=100Þ3Þ for 40%pRHp99% ðstored in airÞ

þ0:25ð1� ðRH=100Þ3Þ for RHX99% ðimmersed in waterÞ;

(
ð16bÞ

where bsc is a coefficient depending on type of cement. Moreover, bspðt � tpcÞ in Eq. (15) is a
coefficient for the development of shrinkage with time, which is estimated from

bspðt � tpcÞ ¼ ½ðt � tpcÞ=ð0:035h20 þ t � tpcÞ
0:5: ð17Þ

2.2. For each beam

Each beam undergoes transverse deflection and axial deformation. Thus, for the transverse
deflection, assuming (as for the plate for the reinforced concrete beam) linearly elastic material
behaviour (service state conditions):

EbIb

d4wb

dx4
þ rb .wb � Nb

@2wb

@x2
¼ qz �

@Mb

@x
in Lk; k ¼ 1; 2; :::;K ; ð18Þ

a1wb þ a2V ¼ a3; ð19aÞ

b1
@wb

@x
þ b2M ¼ b3 at the beam ends x ¼ 0; l; ð19bÞ

wbðx; 0Þ ¼ eðxÞ; ð20aÞ

’wbðx; 0Þ ¼ %eðxÞ; ð20bÞ

where wb ¼ wbðx; tÞ is the transverse deflection of the beam; Ib is its moment of inertia; Nb ¼
Nbðx; tÞ is the axial force at the neutral axis; V ; M are the reaction and the bending moment at the
beam ends, respectively; rb is the surface mass density of the beam; ai; biði ¼ 1; 2; 3Þ are the
coefficients specified at the boundary of the beam; eðxÞ; %eðxÞ are the initial deflection and the initial
velocity of the points of the neutral axis of the beam. It is worth noting that the initial deflection
and velocity of the points of the middle surface of the plate eðxÞ; %eðxÞ must comply with the initial
deflection and velocity of the points of the neutral axis of the beam eðxÞ; %eðxÞ since the plate and
the beams are assumed to be firmly bonded together.
Finally, Eb ¼ EbðtÞ is the time-dependent tangent modulus of elasticity of the beam given as [17]

EbðtÞ ¼
Ebl

1þ wjðt; tbÞ
; ð21Þ

where Ebl is the tangent modulus of elasticity of the beam at time tbl ; w is an ageing coefficient
depending on strain development with time, tb ¼ tbl � tbc; jðt; tbÞ is the creep coefficient related to
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the elastic deformation at tb days, which is defined [18] as

jðt; tbÞ ¼ fRHbðfcmÞbðtbÞbcbðt � tbÞ; ð22Þ

where jRH ; bðfcmÞ; bðtbÞ and bcbðt � tbÞ are two creep coefficients for the beam similar to those for
the plate.
It is apparent that all types of the conventional boundary conditions (clamped, simply

supported, free or guided edge) can be derived from Eqs. (19a) and (19b) by specifying the
coefficients ai; bi appropriately (e.g., for a simply supported end it is a1 ¼ b2 ¼ 1;
a2 ¼ a3 ¼ b1 ¼ b3 ¼ 0).
Since linear beam bending theory is considered, the axial force of the beam does not depend on

the deflection wb: The axial deformation of the beam arising from both the in-plane axial force qx

and the beam shrinkage, which is conveniently expressed in terms of a uniform variation of
temperature Tbðx; tÞ; is described by solving independently the following quasi-static (axial inertia
forces are neglected) boundary value problem, i.e.,

EbAb

@2ub

@x2
¼ �qx þ a

@Tb

@x
in Lk; k ¼ 1; 2; :::;K ; ð23Þ

c1ub þ c2N ¼ c3 at the beam ends x ¼ 0; l; ð24Þ

where N is the axial reaction at the beam ends.
Similarly to the plate, the temperature distribution Tb for the beam is given as

Tb ¼ esbðt � tbcÞ=a; ð25Þ

where

esbðt � tbcÞ ¼ esbðfcmÞbRHbsbðt � tbcÞ; ð26Þ

where espðfcmÞ; bRH ; bsbðt � tbcÞ are the shrinkage coefficients for the beam similar to those for the
plate.
Eqs. (1), (12a), (12b), (18), (23) constitute a set of five coupled partial differential equations

including seven unknowns, namely wp; up; vp;wb; ub; qx; qz: Two additional equations are required,
which result from the continuity conditions of the displacements in the direction of the z and x

axes at the interfaces between the plate and the beams. These conditions can be expressed as

wp ¼ wb; ð27Þ

up �
hp

2

qwp

qx
¼ ub þ

hb

2

qwb

qx
: ð28Þ

It must be noted that the coupling of Eqs. (1), (12a) and (2b), as well as of Eqs. (18) and (23) is
non-linear due to the terms including the unknown membrane and axial forces, respectively.

3. Solution procedure

The solution of the dynamic problem requires the integration of the set of Eqs. (1), (12a), (12b),
(18) and (23) subjected to the prescribed boundary and initial conditions. An analytic solution of
this problem is out of the question. Therefore, recourse to a numerical solution is inevitable. The
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method presented by Katsikadelis and Kandilas [14] is employed in this investigation. According
to this method, the domain O occupied by the plate is discretized by establishing a system of M
nodal points on it, corresponding to M mass cells, to which masses are assigned according to the
lumped mass assumption. Care is taken so that nodal points are placed on the traces of the beams
(Fig. 4). Subsequently, the stiffness matrix as well as the load vector with respect to the nodal
points is established. This procedure leads to the typical equation of motion for the stiffened plate

½m
f .wg þ ½k
fwg ¼ fgg; ð29Þ

where fwg is a vector including the deflections at the M domain nodal points, ½m
 is the mass
matrix, ½k
 is the stiffness matrix and fgg is the nodal load vector.
The mass matrix ½m
 is diagonal. Its elements mi are readily computed by lumping the mass area

contributing to the i nodal point. The elements gi of the load vector fgg are computed from the
mean value of gðxÞ on each element.
The stiffness matrix ½k
 with respect to the M domain nodal points is obtained by inverting the

flexibility matrix ½f
: The latter is established by solving the static problem by working as follows.
The typical element fij is computed as the static deflection at point i due to a unit load at point j: It
is apparent that MðM � 1Þ static solutions are required since the flexibility matrix is symmetric.
The static problem results from the same equations (Eqs. (1), (12a), (12b), (18), (23)) under the
prescribed boundary conditions by neglecting the inertia forces. The solution is achieved using the
AEM as presented in detail by Sapountzakis and Katsikadelis [10, 16].
(a) Forced vibrations. For forced vibrations it is ½k
 ¼ ½f 
�1; and Eq. (29) can be solved using any

time step integration scheme. The initial conditions in this case are

fwð0Þg ¼ feg; f ’wð0Þg ¼ f%eg ð30Þ

(b) Free vibrations. For free vibrations, fgg ¼ f0g: By setting

fwðtÞg ¼ fWg e�iot; ð31Þ

the following typical eigenvalue problem is obtained:

½f
½m
 �
1

o2
i

½I

� �

fWg ¼ 0; ð32Þ

nodal points
mass cells

Fig. 4. Discretization of the plate.
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where ½I
 is the unit matrix, from which the M eigenfrequencies and mode shapes can be
established.

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous Sections, a
computer program has been written and representative examples have been studied to
demonstrate the efficiency and the range of applications of the developed method. In all the
examples treated, the numerical results have been obtained using 54 constant boundary
elements and 162 constant domain rectangular cells. The following data have been used for
the numerical results: concrete C25/30, fcm ¼ 25N/mm2, RH=40%, tp ¼ tb ¼ 28 days,
Epl ¼ Ebl ¼ Ec28 ¼ 32:55 kN/mm2, hp ¼ 0:20m, v ¼ 0:154; bsc ¼ 5 (normal or rapid hardening
cement), a ¼ 10�5

1C.

4.1. Example 1

(a) Free vibrations. The free vibrations of a rectangular plate with side lengths ap ¼ 18:0m and
bp ¼ 9:0m, stiffened by a beam of rectangular cross-section 1:0 m� hb placed along its x-axis of
symmetry (Fig. 5) have been studied. The edges of the plate along the x-axis are free, while the
other two are simply supported according to the transverse boundary conditions. Moreover,
ux ¼ uy ¼ 0 at x ¼ 0; ap while Nx ¼ Nxy ¼ 0 at y ¼ 7bp=2 according to the in-plane boundary
conditions. In this example, both the plate and the beam are simultaneously casted (tbc ¼ tpc ¼ 0).
In Table 1 the first 10 computed eigenfrequencies along with the corresponding mode shapes and
their contours of the plate – beam system with hb ¼ 0:60m for various instants are presented.
Moreover, in Table 2 the fundamental eigenfrequency for various values of the beam height hb

and for various instants are presented as compared with those obtained from the developed model
ignoring the in-plane forces and deformations of the plate as well as the axial forces and
deformations of the beam.
From both tables it is worth noting that the eigenfrequencies obtained decrease with time due to

the predominant action of creep compared to shrinkage. As expected, the influence of creep action
is more significant in the early ageing of concrete. Moreover, the discrepancy from the results
obtained from the numerical solution ignoring the in-plane forces and deformations is
remarkable.

Free

Free

SS
SS

apbp

x

 y

Fig. 5. Plan of the stiffened plate.
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Table 1

Eigenfrequencies O ¼ o
ffiffiffi
r

p
of the plate of Example 1 for various instants t (days)

Om Contours Mode shapes t ¼ 30 t ¼ 100 t ¼ 300 t ¼ 1000

O1 8.309 6.719 6.359 6.285

O2 15.131 12.032 11.004 10.490

O3 19.300 15.478 14.503 14.169

O4 25.554 20.286 18.667 17.947

O5 34.931 27.717 26.363 23.497

O6 35.793 28.467 26.390 25.454

O7 41.537 32.894 30.039 28.961

O8 59.938 47.379 43.589 41.645

O9 65.117 51.385 47.095 44.902

O10 71.953 56.211 50.889 47.576
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(b) Forced vibrations. The forced vibrations of the examined stiffened plate have been studied
when subjected to a suddenly applied uniformly distributed load q of infinite duration. In Table 3
the maximum values, wmax; of the deflection at the centre and at the middle of the free side of the
plate for various instants t are shown together with the corresponding static ones, wst; for the
calculation of the dynamic magnification factor D ¼ maxjRðtÞj; RðtÞ ¼ wðtÞ=wst:

4.2. Example 2

The casting of the beam of the stiffened plate of Example 1 preceded the casting of the plate at a
time interval of T ¼ tpc � tbc days. In Table 4 the time development of the fundamental
eigenfrequency of the stiffened plate for the height of the stiffening beam hb ¼ 0:60m and for
different values of the time interval T is presented. From the results obtained it is concluded that
the dynamic response of the reinforced concrete stiffened plate is not influenced from the time
interval between the casting of the plate and the beams.

5. Concluding remarks

The dynamic analysis of reinforced concrete slab-and-beam structures including creep and
shrinkage effects has been studied. A realistic model has been adopted, which, contrary to other
approaches, takes into account the in-plane forces and deformations of the plate as well as the

Table 2

Fundamental eigenfrequencies of the stiffened plate of Example 1 for various values of the beam height hb and for

various instants t (model I) compared with those obtained ignoring the in-plane forces and deformations (model II)

Age of concrete t (days) Stiffening beam

1.00� 0.20 1.00� 0.60 1.00� 2.00

Model I Model II Model I Model II Model I Model II

30 7.6265 3.4256 15.1310 7.9812 17.8186 9.5305

100 6.2080 2.6924 12.0319 6.2397 14.0262 7.5698

300 5.9497 2.4481 11.0039 5.6419 12.8172 6.8537

1000 5.9437 2.2836 10.4900 5.2678 11.4840 6.3659

Table 2

Table 3

Deflections w (m) at the centre and at the middle of the free side of the plate of Example 1 for various instants t

Age of concrete t (days) Centre Middle of the free side

Dynamic wmax Static wst D ¼ maxjRðtÞj Dynamic wmax Static wst D ¼ maxjRðtÞj

30 0.0200 0.0091 2.19 0.0740 0.0332 2.22

100 0.0302 0.0133 2.27 0.1175 0.0491 2.39

300 0.0343 0.0148 2.32 0.1381 0.0531 2.60

1000 0.0410 0.0153 2.68 0.1530 0.0536 2.85

Table 3
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axial forces and deformations of the beams. The main conclusions that can be drawn from this
investigation are:

(a) The proposed model permits the study of the dynamic behaviour of a stiffened plate including
the opposed effects of creep and shrinkage either for simultaneous or for separate casting of
the plate and the beams.

(b) The evaluated eigenfrequencies are decreased with time due to the predominant action of
creep compared to shrinkage.

(c) The influence of creep action is more significant in the early ageing of concrete.
(d) The evaluated eigenfrequencies of the plate – beams system are found to exhibit considerable

discrepancy from those of other models, which neglect in-plane and axial forces and
deformations.

(e) The adopted model permits the evaluation of the in-plane shear forces at the interface
between the plate and the beams, the knowledge of which is important in the design of
prefabricated plate beams structures (estimation of shear connectors).

(f) Dynamic response of reinforced concrete slab-and-beam structures is not influenced by the
time interval between the casting of the plate and the beams.
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